首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11896篇
  免费   949篇
  国内免费   338篇
  2023年   90篇
  2022年   104篇
  2021年   338篇
  2020年   289篇
  2019年   350篇
  2018年   402篇
  2017年   317篇
  2016年   423篇
  2015年   679篇
  2014年   792篇
  2013年   861篇
  2012年   1079篇
  2011年   1019篇
  2010年   643篇
  2009年   541篇
  2008年   728篇
  2007年   648篇
  2006年   534篇
  2005年   489篇
  2004年   508篇
  2003年   397篇
  2002年   316篇
  2001年   252篇
  2000年   211篇
  1999年   206篇
  1998年   93篇
  1997年   62篇
  1996年   54篇
  1995年   62篇
  1994年   59篇
  1993年   44篇
  1992年   81篇
  1991年   75篇
  1990年   55篇
  1989年   48篇
  1988年   35篇
  1987年   24篇
  1986年   27篇
  1985年   25篇
  1984年   12篇
  1983年   17篇
  1982年   13篇
  1980年   20篇
  1979年   19篇
  1978年   12篇
  1977年   18篇
  1975年   14篇
  1974年   16篇
  1970年   12篇
  1969年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
目的:探讨Proxomed Tergumed系统用于腰椎间盘突出症椎间孔镜术后早期康复的治疗效果。方法:按照纳入和排除标准,选择2016年6月至2017年6月在我科明确诊断为腰椎间盘突出症并进行腰椎间孔镜手术的63例患者进行回顾性分析。按照是否进行系统的Proxomed Tergumed脊柱功能训练,将其分为功能训练组实验组(28例)与对照组(35例)。比较两组患者在术前、术后1周、术后3月及术后6月的疼痛(VAS)、功能评分(ODI)、相关肌肉力量及术后并发症的发生情况。结果:两组患者术后的VAS评分及ODI评分均较术前明显降低(P0.05)。术后1周时,两组VAS评分及ODI评分比较差异无统计学意义(P0.05)。术后3月及6月,实验组VAS评分和ODI评分均显著低于对照组(P0.05)。术后6个月,实验组肌力恢复显著优于对照组(P0.05)。术后6月,实验组各肌肉群力量与术前相比均无显著差异(P0.05),而对照组肌肉群力量仍较术前显著降低(P0.05)。结论:Proxomed Tergumed系统在腰椎间盘突出症椎间孔镜术后的康复中可以有效的降低患者的术后疼痛,改善患者的腰椎功能,相对于传统的术后康复训练而言有其明显的优势,且并无显著的安全性差异。  相似文献   
72.
Yang  Pengshuo  Yu  Shaojun  Cheng  Lin  Ning  Kang 《BMC genomics》2019,20(2):143-151
Background

The explosive growth of microbiome data provides ample opportunities to gain a better understanding of the microbes and their interactions in microbial communities. Given these massive data, optimized data mining methods become important and necessary to perform deep and comprehensive analysis. Among the various priorities for microbiome data mining, the examination of species-species co-occurrence patterns becomes one of the key themes in urgent need.

Results

Hence, in this work, we propose the Meta-Network framework to lucubrate the microbial communities. Rooted in loose definitions of network (two species co-exist in a certain samples rather than all samples) as well as association rule mining (mining more complex forms of correlations like indirect correlation and mutual information), this framework outperforms other methods in restoring the microbial communities, based on two cohorts of microbial communities: (a) the loose definition strategy is capable to generate more reasonable relationships among species in the species-species co-occurrence network; (b) important species-species co-occurrence patterns could not be identified by other existing approaches, but could successfully generated by association rule mining.

Conclusions

Results have shown that the species-species co-occurrence network we generated are much more informative than those based on traditional methods. Meta-Network has consistently constructed more meaningful networks with biologically important clusters, hubs, and provides a general approach towards deciphering the species-species co-occurrence networks.

  相似文献   
73.
Aging is a major risk factor for many chronic diseases due to increased vulnerability to external stress and susceptibility to disease. Aging is associated with metabolic liver disease such as nonalcoholic fatty liver. In this study, we investigated changes in lipid metabolism during aging in mice and the mechanisms involved. Lipid accumulation was increased in liver tissues of aged mice, particularly cholesterol. Increased uptake of both cholesterol and glucose was observed in hepatocytes of aged mice as compared with younger mice. The mRNA expression of GLUT2, GK, SREBP2, HMGCR, and HMGCS, genes for cholesterol synthesis, was gradually increased in liver tissues during aging. Reactive oxygen species (ROS) increase with aging and are closely related to various aging‐related diseases. When we treated HepG2 cells and primary hepatocytes with the ROS inducer, H2O2, lipid accumulation increased significantly compared to the case for untreated HepG2 cells. H2O2 treatment significantly increased glucose uptake and acetyl‐CoA production, which results in glycolysis and lipid synthesis. Treatment with H2O2 significantly increased the expression of mRNA for genes related to cholesterol synthesis and uptake. These results suggest that ROS play an important role in altering cholesterol metabolism and consequently contribute to the accumulation of cholesterol in the liver during the aging process.  相似文献   
74.
Yang  Shu  Zhao  Kang  Xu  Zhengtian 《Plasmonics (Norwell, Mass.)》2019,14(6):1377-1384

Two kinds of graphene-coated fiber systems are proposed and studied for optical trapping. Their plasmonic modes in uniform environment and close to the substrate are studied in the finite element method. The optical forces exerted on dielectric nanoparticle by these systems are calculated by standalone waveguide approximation. It is found that for the dielectric particle with diameter of 1 nm, the maximal optical forces generated by certain modes are more than 107 fN/W whereas their force ranges are only one to several nanometers. These results may have important applications in strong and high-precision optical tweezers.

  相似文献   
75.
76.
Freestanding layered membrane–based devices have broad applications in highly efficient energy‐storage/conversion systems. The liquid–solid interface is considered as a unique yet versatile interface for constructing such layered membrane–based devices. In this review, the authors outline recent developments in the fabrication of soft materials to functionalize layered devices from the aspect of liquid–solid interfacial assembly and engineering arts. Seven liquid–solid interfacial assembly strategies, including flow‐directed, superlattice, solvent‐casting, evaporation‐induced, dip‐coating, spinning, and electrospinning assemblies, are comprehensively highlighted with a focus on their synthetic pathways, formation mechanisms, and interface engineering strategies. Meanwhile, recent representative works on layered membrane–based devices for electrochemical energy applications are presented. Finally, challenges and opportunities of this research area are highlighted in order to stimulate future developments. This review not only offers comprehensive and practical approaches to assemble liquid–solid interfaces with soft materials for various important layered electrochemical energy devices but also sheds lights on fundamental insights by thoughtful discussions on performance enhancement mechanisms of these electrochemical energy systems.  相似文献   
77.
Developing low‐cost, high‐capacity, high‐rate, and robust earth‐abundant electrode materials for energy storage is critical for the practical and scalable application of advanced battery technologies. Herein, the first example of synthesizing 1D peapod‐like bimetallic Fe2VO4 nanorods confined in N‐doped carbon porous nanowires with internal void space (Fe2VO4?NC nanopeapods) as a high‐capacity and stable anode material for potassium‐ion batteries (KIBs) is reported. The peapod‐like Fe2VO4?NC nanopeapod heterostructures with interior void space and external carbon shell efficiently prevent the aggregation of the active materials, facilitate fast transportation of electrons and ions, and accommodate volume variation during the cycling process, which substantially boosts the rate and cycling performance of Fe2VO4. The Fe2VO4?NC electrode exhibits high reversible specific depotassiation capacity of 380 mAh g?1 at 100 mA g?1 after 60 cycles and remarkable rate capability as well as long cycling stability with a high capacity of 196 mAh g?1 at 4 A g?1 after 2300 cycles. The first‐principles calculations reveal that Fe2VO4?NC nanopeapods have high ionic/electronic conductivity characteristics and low diffusion barriers for K+‐intercalation. This study opens up new way for investigating high‐capacity metal oxide as high‐rate and robust electrode materials for KIBs.  相似文献   
78.
Transition metal oxides hold great promise as high‐energy anodes in next‐generation lithium‐ion batteries. However, owing to the inherent limitations of low electronic/ionic conductivities and dramatic volume change during charge/discharge, it is still challenging to fabricate practically viable compacted and thick TMO anodes with satisfactory electrochemical performance. Herein, with mesoporous cobalt–boride nanoflakes serving as multifunctional bridges in ZnCo2O4 micro‐/nanospheres, a compacted ZnCo2O4/Co–B hybrid structure is constructed. Co–B nanoflakes not only bridge ZnCo2O4 nanoparticles and function as anchors for ZnCo2O4 micro‐/nanospheres to suppress the severe volume fluctuation, they also work as effective electron conduction bridges to promote fast electron transportation. More importantly, they serve as Li+ transfer bridges to provide significantly boosted Li+ diffusivity, evidenced from both experimental kinetics analysis and density functional theory calculations. The mesopores within Co–B nanoflakes help overcome the large Li+ diffusion barriers across 2D interfaces. As a result, the ZnCo2O4/Co–B electrode delivers high gravimetric/volumetric/areal capacities of 995 mAh g?1/1450 mAh cm?3/5.10 mAh cm?2, respectively, with robust rate capability and long‐term cyclability. The distinct interfacial design strategy provides a new direction for designing compacted conversion‐type anodes with superior lithium storage kinetics and stability for practical applications.  相似文献   
79.
Lithium metal is the most attractive anode material due to its extremely high specific capacity, minimum potential, and low density. However, uncontrollable growth of lithium dendrite results in severe safety and cycling stability concerns, which hinders the application in next generation secondary batteries. In this paper, a new and facile method imposing a magnetic field to lithium metal anodes is proposed. That is, the lithium ions suffering Lorentz force due to the electromagnetic fields are put into spiral motion causing magnetohydrodynamics (MHD) effect. This MHD effect can effectively promote mass transfer and uniform distribution of lithium ions to suppress the dendrite growth as well as obtain uniform and compact lithium deposition. The results show that the lithium metal electrodes within the magnetic field exhibit excellent cycling and rate performance in a symmetrical battery. Additionally, full batteries using limited lithium metal as anodes and commercial LiFePO4 as cathodes show improved performance within the magnetic field. In summary, a new and facile strategy of suppressing lithium dendrites using the MHD effect by imposing a magnetic field is proposed, which may be generalized to other advanced alkali metal batteries.  相似文献   
80.
Solar desalination is a promising and sustainable solution for water shortages in the future. Interfacial solar‐to‐heat conversion for desalination has attracted increasing attention in the past decades, due to the heat localization induced high thermal efficiency, simple structure, and low cost. In this review, the authors summarize and analyze the critical processes involved in such a solar desalination system, including the thermal conversion and transport, salt dissipation, and vapor manipulation. Mathematical models of heat transfer and salt dissipation are also built for quantitative analysis of systematic performance relative to properties of employed materials and system designs. Recent efforts devoted to improving the overall thermal efficiency, salt rejection, and water yield are then summarized. Based on the analysis and previous results, opportunities for further interfacial solar desalination development are highlighted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号